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1 Introduction
In the past years increasingly large systems, mainly internet sites, were built. This is due
to the enormous growth of the web 2.0 with its social communities like facebook and
video platforms. The requirements of these systems can be categorized in two groups:
software and hardware requirements. While computer hardware is evolving rapidly, ac-
cording to Moore’s Law, there is a lack in software enhancements. That means we do
have the hardware to build large systems but it’s extremely hard to write software for
them.
Thus this paper will address the software part, especially the part of programming lan-
guages. Choosing the right programming language(s) often decides on the success of a
system, so in this paper, some programming language requirements will be shown and
will be discussed afterwards.

2 Large-scale System Requirements
When thinking of large-scale systems, social communities like facebook or video host-
ing plattforms like YouTube come in mind. These systems are used by millions of users
at the same time and produce remarkably heavy traffic on the internet[1]. On the techni-
cal site are many servers distributed all over the world to handle requests from millions
of users.
What does not come in mind is these systems did not start big, most of them were run
by startup companies which did not have funds for dozens of servers. Something that
started small may eventually grow exponentially within a short period of time. This
is often a problem for todays way of programming. Sometimes changes to the system
have to be made within days or even hours[1]. Alan Kay illustrates the problem when
he says:

I was thinking about ecological computing. When I was working with computers
in the late ’60s, all of the computer power on Earth could fit into a bacterium. The
bacterium is only 1/500th of a mammalian cell, and we have 10 trillion of those
cells in our bodies. Nothing that we have fashioned directly is even close to that
in power. Pretty soon we’re going to have to grow software, and we should start
learning how to do that. We should have software that won’t break when something
is wrong with it. As a friend of mine once said, if you try to make a Boeing 747 six
inches longer, you have a problem; but a baby gets six inches longer ten or more
times during its life, and you never have to take it down for maintenance.

Some fundamental programming languages requirements, being the basic tools for soft-
ware development, can be extracted from the description above.
The human body consists of trillions of cells interacting with each other simultaneously
which ultimately leads to its immense power. Programming languages should therefore
provide means of doing different things at the same time. This mechanism is called
parallel programming and discussed in the following chapter.
The larger a system is, the more likely faults occur. In most of today’s software a lot
of work is invested for exception handling and error avoidance, but if a fault occurs the
whole system will crash. Since a system crash for an organism like the human body
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means death, it has to be highly fault tolerant. That means it has to handle wrong be-
haviour or defects caused by e.g. viruses or bacteria it has never seen before.
Lastly human beings grow, they evolve from merly a single cell to what is one of the
most complex systems known. The question here is, how can such a growth be applied
to programming? Living beings are growing, that means a system should be running
when it grows. The majority of common programming languages does not support code
changes in a running application.
Lastly complexity of large systems has to be faced in some manner. The last chapter will
thus concentrate on improvements for programming languages in general, like syntax.
Putting it all together programming language requirements for scalable applications are:

• Parallel programming

• Fault tolerance

• System updates

• Syntax and semantics

3 Parallel Programming
Already living in a multicore world, programmers have to face the challenge of paral-
lel programming to utilize all available CPU power. Programming with concurrency in
mind adds a lot of complexity since the human mind works sequentially which makes
thinking in concurrent tasks hard.
In this chapter some fundamentally different approaches to parallel programming will
be discussed. First the most common approach with threads and shared memory. Lan-
guages that support this model are Java or C# for example.
The second approach uses the actor model, having no shared memory but asynchronous
message passing at language level. An example of such a language is Erlang, a func-
tional language that has been used successfully in highly available systems.

3.1 Multithreading
Multithreading comes from the need of having very lightweight processes that can ac-
cess data with minimal overhead. Operating system history shows that this concept is
known from the beginning. The first operating systems that supported multiprogram-
ming had one address space which was shared by the running programs. This lead to
serious problems including security issues and dependencies of unrelated programs.
The result was a separatation of the address space which wiped away most of the prob-
lems with a shared one. The solution is at the cost of performance in inter process
communication. So threads were built as a step back to the old way of multiprogram-
ming with all its downsides.
Most of the downsides however can be avoided in some cases. There are applications
especially with a large part of data parallelism like most of image processing or render-
ing.
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Large-scale systems like social community web sites demand for task parallelism in-
stead of data parallelism. This in mind, programming with threads becomes difficult.
Extensive locking is required to keep data in a consistent state and interaction of many
threads becomes unmanagable. Understandable sequential program flow becomes a
complex situation in which humans regularly fail. Dietrich Dörner shows in ’Die Logik
des Mißlingens’[2] that few people are able to manage systems in which many parts
concurrently influence one another.
When moving from data to task parallelism another technical problem arises: In mainly
data parallel applications few threads are running, approximately as much threads as
there are hardware threads available (depending on the number of CPUs and cores). In
a task parallel application, for example a web server, an intuitive approach would be
to have as much threads as there are users. Having 10.000 users at the same time and
as much kernel threads1 will result in a system with nearly zero throughput. Context
switches of kernel threads are quite expensive and thus are a limiting factor to the over-
all thread count. Alternatively lightweight user level threads can be used to solve the
context switching problem. The disadvantage is the operating system knows nothing
about these threads and thus cannot distribute work on the available CPUs.

3.2 Functional Programming and Actor Model
Functional programming, especially its first implementation LISP[3], is known for al-
most half a century by now and was nearly forgotten since the rise of object oriented
programming. Recently functional programming has its renaissance in languages like
Erlang, F# or Scala. Even C#, an object oriented language, has limited support for func-
tional programming in the shape of lambda expressions for example.
There are two reasons for this development:

• Many algorithms can be described in a functional style with few lines of code
without the overhead of defining classes to wrap the code. Thus raising produc-
tivity and clearness of code.

• Pure functional programming is side-effect free. That means whenever a function
is called with some arguments, if the arguments are the same, the return value of
the function will be the same. There is no such thing as shared state that can be
modified by a function.

Side-effect free functions can easily be called in parallel without having to lock re-
sources. This is taken one step further by the actor model. Each actor encapsulates
some functionality and is independend of other actors. Actors communicate through
asynchronous message passing only, which differentiates them from objects in the ob-
ject oriented world. Actors can perform tasks simultanously. Joe Armstrong, one of
the inventors of Erlang, thus calls this approach to programming Concurrency Oriented
Programming [4].
In Erlang, each actor has its own thread of execution. These threads are called pro-
cesses since their nature of not sharing data and their similarity to operating system

1Threads that are managed by the operating system
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Figure 1: Process creation times. red : Erlang, green : Java, blue : C# source: [5]

processes. In contrast to processes on operating system level, Erlang processes are
extremely lightweight, shown in figure 1. They can easily be spawned and a single ma-
chine is able to manage several hundred thousands of these processes.
Internally Erlang uses both user level threads to achieve high process counts and kernel
threads to utilize hardware threading. So the main difference between this approach and
the previous one is threads are abstracted to a higher level construct which is supported
on language level. The goal is to hide concurrency as good as possible from the pro-
grammer. Erlang allows server programming with mostly sequential code through so
called behaviours that are high level building blocks for different kind of servers. More
detailed information can be found on the Erlang website: http://www.erlang.org or in
Joe Armstrong’s book[4].
The idea of language support for concurrent programming can also be taken one step
further to distributed programming. There, some new Problems arise, especially in the
area of software or hardware faults. Thus, the next section will cover the topic: Fault
tolerance.

4 Fault tolerance
In large systems, especially distributed systems, many different fault types can occur.
This section will show the most common ones, how they can be indicated and what
their influence on programming is. Since most programming languages do not have
the ability to detect faults, detection and recovery has to be built into application code,
which adds another aspect to application development and thus raises complexity. Using
the example of Erlang, which was also designed for distribution, some concepts for
handling or at least detecting faults on language level will be shown.
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4.1 Fault types
Basically two types of faults in distributed systems occur. In the first category are hard-
ware faults, like server crashes or network problems. In the second category are soft-
ware errors, which may occur due to communication protocol violations, for example,
or simply programming errors.
To recover from faults or at least detect their source is hard, especially in a multithreaded
or distributed system. One basic building block required for fault recovery is exception
handling. Despite a variety of programming languages have some kind of exception
handling construct, support for handling them in threaded or distributed environments
is rather limited.
Whereas the current C++ standard for example does not mentioned anything about mul-
tithreading at all and thus does not provide any means of fault recovery beyond threads2,
newer languages like Java do provide methods3 but leave much work to the programmer
in this case, so they are of limited use.

4.2 Exception domains
In which case should exceptions be handled? An Exception has to be handled if the
specification defines a way to deal with it, else some kind of error occured that cannot
be handled. For example when a user tries to open a file that does not exist in a textedi-
tor, the specification could define that an message to inform the user will show up, else
an error occured.
What happens if an exception is not handled at all or some other kind of fault occurs?
Three different outcomes are possible and shown in figure 2. The initial fault is marked
by the red cross in part a), which means that one process4 fails, probably caused by an
unhandled exception.

Figure 2: Different outcomes of unhandled exceptions. Circles represent different threads or
processes each belonging to one server (S1 or S2) illustrated by the two boxes. Circles with the
same color are depending on each other. Part a) shows the source of the fault.

The behaviour of most languages is shown in part b): A fault in one thread causes the
whole application to crash, even if there are other independent subsystems. This is fatal

2Most compilers like the GNU, Microsoft or Intel compiler however allow multithreaded programming.
3The mechanism is explained in the Java API[6]
4The words ’process’ and ’thread’ are treated equivalently here and in the following sections.
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for building fault tolerant systems, since system stability depends on the stability of the
weakest subsystem.
Part c) shows a better approach, only the subsystem that fails will be shut down, the
rest of the application is untouched. Having the ability to restrict the crash on a specific
subsystem increases the overall system stability but leaves some orphaned ones on other
machines running.
Part d) goes even one step further. Whereas only processes that are on the same ma-
chine as the crashed one are being killed in the previous part, in this, even processes on
other machines that rely on the crashed one, will be killed. This leaves no processes that
depend on killed ones running and also guaranties that unrelated ones stay unaffected.
Erlang as an example supports this model and allows exact control over the fault recov-
ery process with the help of supervision trees. The basic principles of supervision trees
are briefly described below, for a more complete explanation, especially in case of the
Erlang implementation reading [7] is advised.

4.3 Supervision trees
Erlang programs consist of many interacting processes as already statet in section 3.2.
Each process can be linked to every other process. Linking two processes means both
depend on one another. Linking is biderectional, if one of two processes that are linked
together dies the other will follow. This mechanism is independent of the location of the
process and equally works on remote ones. So linked processes fulfill the requirement of
figure 2 d). The Erlang VM abstracts unreliable software and hardware. If one machine
fails because of a failure in the power supply, all linked processes will be killed by
default.
Fault tolerance not only means letting parts of the system crash without others being
affected, it also implies availability. Since crashed processes are not available, they
have to be restartet whenever they crash. Some kind of uniderectional link, which in
Erlang is called monitor, is needed to fulfill this requirement. If a monitored process
crashes the monitor gets noticed and can bootstrap the failed processes according to
some rules.
Since a monitor itself is a process it can also be monitored, thus the mechanism of having
multiple levels of monitoring is called supervision tree. A prerequisite of supervision
is processes (or threads) have to die if something goes wrong which contradicts the
Java approach for example. Introducing checked exceptions forces the programmer to
handle situations inside a thread that simply can’t be handled in a reasonable way. This
requirement is in depth discussed in [7] in chapter 2.10.
Monitors can also be used remotely which grants the ability to recover from machine
crashes for example. If a monitor were local, it would fail at the moment the machine
crashes, too. With remote monitors the killed processes can be respawned on a working
machine.
Yet, spawning a process on different machines introduces another issue. New code may
have to be distributed to a different machine at runtime because it might not have loaded
the code that was running on the crashed server. The topic of software updates and
especially hot code swapping, to solve this issue, is therefore discussed in the following
section.
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5 Updating Software without Downtimes
One main goal of large-scale systems is high availability. One cannot imagine a single
day with the google search site down for maintenance, for example. But how about bug
fixing and system updates? What is a system worth that gets bugs fixed in a very small
period of time, but is hardly available since the system has to be taken offline each time
a patch is applied? This section will show concepts of how availability can be preserved
in the presence of code change.

5.1 Hot Code Swapping
Figure 3 a) shows a classical programming cycle. For simplicity reasons testing and
other factors are left out. The problem with this approach is as follows. When some
code is changed or added, after the compilation phase, the test system has to be startet,
meaning changing some binaries, running the application, and proceeding to the altered
program section. After a bug has been found the system has to go offline and program-
ming is continued. Although these steps can be automated to some degree they consume
quite a lot of time the programmer can do nothing but wait.

Figure 3: Two different programming cycles. a) classical programming b) programming in a live
system

In the past some effort has been made to overcome this problem. An example is
Smalltalk, in which the programmer operates in the running system. There is no need
for restarting and changes can be applied on the fly or even while the debugger is run-
ning. This approach increases productivity by reducing the waiting period and is shown
in figure 3 b). The mechanism of code change in a running system is called hot code
swapping. Whereas it is possible to write an update on an application server with thou-
sands of users on it, a programmer would not want to do it.
Why will the mechanism still be an advantage for high availability, if it is used on test
systems only? The answer is simple, the same mechanism cannot solely be used while
some update or patch is being developed on a test system, it can also be used for de-
ploying an update to a live system. This has to be done in two steps: distributing the
code and finally updating running code. The split is necessary to apply updates as fast
as possible.
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Applying large updates on running systems is a topic of its own since there are quite
a few pitfalls concerning dependencies between processes etc. and is thus out of the
scope of this paper. For example some kind of versioning has to be made in the updat-
ing process in which some old and some new code is running at the same time.

5.2 Hot Code Loading
Another advantage is shown in distributed systems. As stated in the previous section
failure some server has to take over on server failure. But this server does not have to
have the necessary code loaded, so every server with little load will do. With hot code
swapping or in this case, hot code loading, the new server is able to load needed code on
demand. This saves resources and keeps the system flexible. Joe Armstrong describes
the principle of a generic server which can take over any task in his Erlang book[4].
As already indicated, Erlang supports hot code swapping and proofs this mechanism
truely working. Erlang is used in highly available5, carrier-grade ATM switches pro-
duced by Ericsson and various other projects6, notably the facebook chat backend is
implemented in Erlang, too.
As seen before, hot code swapping increases productivity by reducing the time program-
mers have to wait until code changes can be tested and debugged. The next section will
cover other methods to increase productivity.

6 Syntax and Semantics
In the previous sections, some of the most important programming language require-
ments to help building large-scale systems have been shown. The question to ask next
is, what makes a system large-scale? The obvious answer would be, systems with many
lines of code are large-scale. Is this really true? Surprisingly there is a famous quote
from Bill Gates about this topic, saying:

Measuring programming progress by lines of code is like measuring aircraft build-
ing progress by weight.

So we really do not want to write lots of code but what is the gain of writing less?
According to [8] and [9], the amount of errors in code is proportional to the number of
lines of code and the amount of code which can be written in a specific time is constant.
This means, if a program can be written with only half as many lines of code, there will
be half as many errors and coding will be finished twice as fast. So system size should
better be measured in user or feature count instead of lines of code.

6.1 Moore’s Law
According to Moore’s Law, transistor count on a single CPU has been increasing ex-
ponentially, which can be seen in figure 4. This development makes increasingly large
systems technically possible. However instead of only system size growing, the lines of

5The availability of the AXD301 ATM switch is reportet to be nine nines.
6A list can be found in the Erlang FAQ at http://www.erlang.org/faq/faq.html#AEN50.
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code count for these systems were increasing similarly, which can be seen exemplary
in the development of the linux kernel, figure 5. The result is hardly maintainable code
with increasing numbers of bugs and thus unstable systems.

Figure 4: Microprocessor development over time. Source: [10]

Figure 5: Growth of the Linux kernel. Source: [11]

What can be done about it? The easiest and shortest term solution is simply to use the
right tools for a problem. This general rule also applies to programming languages and
will be discussed shortly. Another solution would be to use very high level languages
or even use extendable languages.

6.2 Using the right Tools
One should use the right tools to do something efficiently. Though this sentence sounds
simple and no one would ever try to use a spoon for cutting something, software devel-
opers seem to do so. There currently is no such thing as one language for everything.
Whereas Java for example, once developed for household machines, now gets used
for enterprise applications. Similarly XML is used both for documentation and object
persistance. The result is, more and more technology and specifications have to be de-
veloped to workaround language deficiencies.
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For example XML documents may be logically equivalent but not physical7. So there
is a standard to preserve physical equivalence at the cost of document readability. So
to check for integrity of an XML document, it has to be parsed first and transformed
to form specified for binary compatibility. Even binary or computer generated data like
IDs are serialized. One of the arguments for XML was, it is both machine and human
readable. The result is: One technology gets abused for the strangest applications.
This is definitely not the way to do things right. Technology should be used for the
things it was developed for and not because everyone uses it or one does not want to
learn another one. The people at facebook have understood that very well. Facebook
uses a dozen of different technologies for example Java, C++, Ruby, Haskell, Perl, Er-
lang,...
The disadvantage of using different languages at the same time is, some glue code is
necessary to connect modules written in one language with modules of another. A way
out of the problem is tried by Microsoft and Sun, for example. Both have built a virtual
machine with support for several different programming languages on top of it. Thus
plugging code together is much easier.
Microsoft for example added a functional language called F# to the .NET framework
since some problems, especially many algorithms are more elegantly expressed in a
functional style. On Sun’s side is Scala, also functional and increasingly popular. Thus
it is on the software developers to use available technologies and the management to let
them.

6.3 Very High-Level Languages
A somewhat different approach is the use of very highlevel languages. These are lan-
guages with special syntactical constructs that are able to reduce the amount of code
to solve a problem significantly. Some research in this field is made by a team around
Alan Kay at Viewpoint Research Institute. The project is called "STEPS Toward The
Reinvention of Programming" [12].
The goal is to build a whole personal computing experience somewhat similar to what
is currently known as the operating system with some basic applications in less than
20000 lines of code and from scratch. But how can it be achieved? The answer lies in
the use of very high-level languages that are designed for a specific problem domain.
Unlike DSLs8 are specialized languages for one problem domain the goal of STEPS is
to build a whole system, with many different languages, from hardware to the end-user.
Heart of the system are facilities to efficiently build new languages. The core is IS a
parametric machine code compiler, which written in itself can be expressed by 1000
lines of code. As an example, a working JavaScript can be implemented in about 170
lines of code. Being able to easily develop high-level languages that are compatible
with the whole system heavily decreases the overall amount of code. Research on this
topic is by far not complete, so whether it will be a success remains to be seen.

7Physical equivalence is important for generating and validating hashes which is needed for most secu-
rity mechanisms.

8Domain Specific Language.
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6.4 Extensible Languages
Instead of having many languages for specific problems one can think of a language
that is able to adapt its syntax and semantics to problem domains. Such a language
has to have the ability to change its own grammar on runtime, making grammar a first-
class citizen. In fact, in the 1960s and 70s, some programming languages were built
that were able to be extended by the programmer, IMP[13] and Lithe[14] being two of
them. Though this approach seems to have been abandoned recently, it may have its
renaissance in the near future.

7 Conclusion
Current development shows that a change in the way of software development takes
place, with web 2.0 applications being one of the pushing forces. More and more fea-
tures have to be implemented in programming languages that allow for system scalabil-
ity. Whereas some features are available in relatively new languages like Erlang, others
are yet to come. Modular language design seen in research projects like STEPS might
get a key principle for upcomming languages.
The trend in software development goes from the one solution for all problems approach
to multiple language systems in which each language is seen as a tool made for a specific
task. With the ability to change code on runtime and being able to recover from software
faults, programs writtten in such languages are able to grow over time. So large-scale
systems can grow with less programming effort and thus both higher productivity and
reliability.
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